No-Reference Hyperspectral Image Quality Assessment via Quality-Sensitive Features Learning
نویسندگان
چکیده
Assessing the quality of a reconstructed hyperspectral image (HSI) is of significance for restoration and super-resolution. Current image quality assessment methods such as peak signal-noise-ratio require the availability of pristine reference image, which is often not available in reality. In this paper, we propose a no-reference hyperspectral image quality assessment method based on quality-sensitive features extraction. Difference of statistical properties between pristine and distorted HSIs is analyzed in both spectral and spatial domains, then multiple statistics features that are sensitive to image quality are extracted. By combining all these statistics features, we learn a multivariate Gaussian (MVG) model as benchmark from the pristine hyperspectral datasets. In order to assess the quality of a reconstructed HSI, we partition it into different local blocks and fit a MVG model on each block. A modified Bhattacharyya distance between the MVG model of each reconstructed HSI block and the benchmark MVG model is computed to measure the quality. The final quality score is obtained by average pooling over all the blocks. We assess five state-of-the-art super-resolution methods on Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Hyperspec-VNIR-C (HyperspecVC) data using our proposed method. It is verified that the proposed quality score is consistent with current reference-based assessment indices, which demonstrates the effectiveness and potential of the proposed no-reference image quality assessment method.
منابع مشابه
A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملReduced-Reference Image Quality Assessment based on saliency region extraction
In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...
متن کاملA Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor
The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...
متن کاملNo-reference image quality assessment using modified extreme learning machine classifier
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between...
متن کاملNo-reference JPEG-image quality assessment using GAP-RBF
In this paper, we present a novel no-reference (NR) method to assess the quality of JPEG-coded images using a sequential learning algorithm for growing and pruning radial basis function (GAP-RBF) network. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and backgroun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017